A Brief Study on Optical and Photocatalytic Property of Core-shell $\mathrm{TiO}_{2} \mathbf{M g O}$ Nanocomposites

Priyanka Basyach ${ }^{1 *}$ and Amarjyoti Choudhury ${ }^{2}$
${ }^{1}$ Department of Physics, Digboi College, Assam-786171
${ }^{2}$ Assam Downtown University, Guwahati, Assam-781068
*E-mail: basyachpriyanka@gmail.com

Abstract

Semiconductor nanoparticles have found a prominent place in varied areas of research because of their novel optical and electrical properties [1]. Among them, core shell nanostructures have grabbed immense attention which are yielded by coating a given ensemble of nanoparticles by another material [2]. Among the semiconductors, TiO_{2} has already established its versatility in photocatalysis. But since TiO_{2} shows very little absorbance in visible region, its band gap may be tuned by coating it with a shell layer. Such compounds exhibit improved absorbance in visible regime than the core TiO_{2}. Again, photocatalysis requires ambient charge separation of electron and holes. This is favored by formation of core-shell nanostructures as charge separation occurs at the interface due to difference in band alignment of the two materials [2]. Here we report on a two step synthesis method of core-shell $\mathrm{TiO}_{2}-\mathrm{MgO}$ nanocomposites via a cost effective and simple sol-gel method. It was followed by studying their optical properties through characterization tools such as UV and PL spectra. A study on photocatalytic activity of the prepared core-shell nanocomposites for degradation of methylene blue dye (MB) under visible light is also performed which shows that the core-shell nanostructure displays much better photocatalytic activity than the core TiO_{2} nanostructures.

Keywords: Nanocomposites, Photocatalytic

References:

[1] H.H.Michael, et al. Science 292 (2001) 1897.
[2]S.A. Evanov, et al..J. Am. Chem. Soc. 129 (2007) 11708.

